Effect of Composition on Strain-Induced Martensite Transformation and Tensile Stress-Strain Curve for Austenitic Stainless Steels
نویسندگان
چکیده
منابع مشابه
Strain-Induced Martensite Transformation Simulations during Cold Rolling of AISI 301 Austenitic Stainless Steel
Austenite is a semi-stable phase in most stainless steels that deforms to martensite under Md30 and forms martensitetype ά and ε due to the deformation in the steels. Since the distribution of strain induced martensite plays animportant role in achieving desired properties, the main objective of the present work is to model martensitedistribution of ά during cold rolling using...
متن کاملstrain-induced martensite transformation simulations during cold rolling of aisi 301 austenitic stainless steel
austenite is a semi-stable phase in most stainless steels that deforms to martensite under md30 and forms martensitetype ά and ε due to the deformation in the steels. since the distribution of strain induced martensite plays animportant role in achieving desired properties, the main objective of the present work is to model martensitedistribution of ά during cold rolling using finite element me...
متن کاملA New Technique based on Strain Energy for Correction of Stress-strain Curve
Tensile stress-strain curve is of high importance in mechanics of materials particularly in numerical simulations of material deformations. The curve is usually obtained by experiment but is limited by necking phenomenon. Engineering stress-strain curve is converted to true stress-strain curve through simple formulas. The conversion, however, is correct up the point of necking. From this point ...
متن کاملY Studies on Austenitic Stainless Steels
Abstract--In this investigation, the fracture surfaces of SS 304 and SS 316 austenitic steels were analysed using the X-ray fractography technique. In both cases, a decrease in the austenite content was observed at the fracture surface as a result of deformation induced martensite, indicating a linear relation with Km~ within the stable crack growth region. The presence of this martensite was f...
متن کاملEffect of Strain Induced Martensite on the Deep Drawing Behavior of 304L Steel: Simulation and Experiment
Abstract In the present research, the behavior of 304L austenitic stainless steel in the deep drawing process has been studied at the room temperature through experimental and finite element simulation method. Magnetic method calibrated by XRD was used to measure induced-martensite. Martensite volume fraction in the various portion of the deep drawn cup under optimum Blank Holder Force (BHF) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Welding and Joining
سال: 2018
ISSN: 2466-2232
DOI: 10.5781/jwj.2018.36.2.5